WORKING PAPERS

A Comparison of Two Econometric Models (OLS and SUR) for Forecasting Croatian Tourism Arrivals

Tihomir Stučka

W-8 July 2002

A Comparison of Two Econometric Models (OLS and SUR) for Forecasting Croatian Tourism Arrivals

Tihomir Stučka

Working Papers Croatian National Bank July 2002

The views expressed in this paper are those of the authors and do not necessarily reflect the views of the Croatian National Bank.

Published by Croatian National Bank Publishing Department Trg hrvatskih velikana 3, 10002 Zagreb Phone: 385-1-4564-555 Phone: 385-1-4922-070, 385-1-4922-077 Fax: 385-1-4873-623

Web http://www.hnb.hr

Editor-in-chief Evan Kraft

Editorial board Ante Babić Igor Jemrić

Editor Romana Sinković

Technical editor Božidar Bengez

Translation Lidija Čurčija

Language editing Lancon

Associate Ines Merkl

Printed by Intermark d.o.o., Zagreb

Those using data from this publication are requested to cite the source.

Printed in 450 copies

ISSN 1331-8586

Tihomir Stučka

A COMPARISON OF TWO ECONOMETRIC MODELS (OLS AND SUR) FOR FORECASTING CROATIAN TOURISM ARRIVALS

Summary

Tourism receipts have a large impact on the Croatian economy. The large inflow of foreign exchange during the summer season provides not just income but also a stabilising effect on the local currency, the kuna. The author compares two demand models using OLS and SUR estimation techniques. The model is a system of equations covering five countries, which represent around 72%-78% of total foreign annual arrivals. The model describes arrivals to be a function of the home country's real GDP and the real exchange rate. Based on estimates of forecasting accuracy, it seems that the SUR model yields more precise predictions of foreign arrivals.

JEL: C22; C53

Keywords: tourism demand, forecasting, Croatia

Contents

1 Introduction	1
2 Literature Review	2
3 Model Description	4
4 Data Description	5
5 Estimation Results	6
6 Conclusion	10
Literature	1
Appendix	13

Tihomir Stučka

A COMPARISON OF TWO ECONOMETRIC MODELS (OLS AND SUR) FOR FORECASTING CROATIAN TOURISM ARRIVALS

1 Introduction

Tourism receipts have a large impact on the Croatian economy. The large inflow of foreign exchange during the summer season provides not just income but also a stabilising effect on the local currency, the kuna; in addition, it is crucial in easing Croatia's negative external balance, which stems primarily from a large trade deficit. Tourism receipts increased annually on average by 12% from 1993 to 2001, when they reached around 3.2 billion kuna.¹ Net tourism receipts financed around 75% of Croatia's trade deficit in 2001 (Figure 1).

Figure 1 Net tourism receipts as % of trade deficit

The main aim of this article is to develop a model of a physical indicator, such as arrivals, in order to forecast tourism receipts. This demand model should be able to serve as a forecasting tool for the medium term projection of the position of tourism receipts in the balance of payments. One way of forecasting is to multiply the predicted arrivals of certain emitting markets with their estimated per capita expendi-

¹ Projection based on actual data for the first three quarters in 2001.

ture. Predicted arrivals could also be used as one of the explanatory variables when explicitly modelling tourism receipts.² In addition, the model can be used to approximate the extent to which various events influence tourism, such as the Kosovo crisis. The model therefore focuses on aggregate tourism flows between the countries of origin and destination; it does not deal with estimating structural components, that is, disaggregated tourism flows for business, holidays and visits to friends and relatives.

The model is a system of equations covering the five countries (Germany, Italy, Austria, Slovenia, and the Czech Republic) that provided between 72% and 78% of total annual arrivals during the period 1993-2000. The first step applies an OLS model to seasonally unadjusted data. The second step takes the high seasonality of tourist arrivals into account and compares results. The third step estimates a system of equations using SUR, taking into account the correlation of the error term in the five equations. Using inside sample forecasting, evaluation of the forecasts from both models, the OLS unadjusted and SUR,³ suggests that SUR estimators are more efficient.

Section 2 gives a brief review of the literature. Section 3 describes the model and the estimation procedure. Section 4 describes the data employed. Section 5 presents and interprets the empirical results of the estimated models. The paper concludes with an evaluation of the forecasting power of the models. According to our data and models, it seems that SUR estimators provide a better basis for forecasting foreign arrivals to Croatia than OLS estimators.

2 Literature Review

The majority of works on modelling tourism flows between the destination and origin country are based on some form of the basic demand function Q = f(Y,P), where Qrepresents the quantitative measure of foreign tourist consumption of the destination product, Y some income proxy of the origin country and P a proxy for the relative price between the origin and destination country. Some works also include price substitution effects into their model.

The most appropriate variable to be used as the dependent variable is the tourism receipts of the destination country (Tse, 1999, Jensen, 1998). Croatia's tourism receipts are estimated from survey data taken at the main border crossings. However, this data exhibit several series breaks due to changes in methodology, which poses large difficulties for a time series analysis. Alternative proxies are overnights spent by foreign tourists and foreign tourist arrivals, but there are disadvantages to both these variables. The amount of overnights spent is highly susceptible to understatement since they are more subject to the grey economy than arrivals, especially in complementary accommodation (camping and lodgings). Foreign tourist arrivals, on the other hand, do not account for variability in the length of stay. Witt and Martin⁴ define arrivals in relative terms, accounting for the population effect. However, we do

² Difficulties and explicit assumptions when undertaking the estimates are given in Stučka (2000).

³ SUR – Seemingly Unrelated Regression.

⁴ Witt and Martin (1987a and 1987b).

not take this approach since the set of Croatia's main origin countries includes CEE transition countries whose tourist emission potential⁵ is not positively correlated with population size. For example, Poland had a population of 38.7 million in 1997, whereas Austria had a population of 8.1 million; however, according to the number of holiday travels abroad in 1998, the potential of the Austrian emission market was twice the size of the Polish market,⁶ a fact that can be explained, among other things, by the difference in living standards.

Income variables are mostly defined as the real GDP of the origin country (Jensen, 1998, Kulendran, Wilson, 2000) or real per capita GDP (Lathiras, Siriopoulos, 1998). While real disposable income in the destination country would be the best measure, appropriate time series of this variable are in most cases not available for transition countries.

Much research has been undertaken in the area of price modelling in tourism demand functions. The tourist consumption basket, especially that of foreign tourists, differs from the CPI consumption basket due to the difference between the basket of goods that foreign tourist consume during the season and the consumption of "native" consumers during the whole year. While Martin and Witt (1987) show that the CPI is a good proxy for the tourist cost of living variable, it represents a brave assumption in Croatian circumstances, taking into account the weight of individual products and services in the CPI basket. Nevertheless, it represents the only measure since there are no alternative proxies for the tourism cost index.

The standard variable entering all equations is the relative price of the origin and destination countries, which is at times adjusted for the exchange rate (Lathiras, Sirioupulis, 1998, Kulendran, Wilson, 2000). In addition, some authors (Turner, Reisinger, Witt, 1998, Loeb, 1982, Lathiras, Sirioupulos, 1998) take into account price developments in competing destination countries as a proxy for the substitution effect. The model presented in this paper does not contain the price substitution effect variable since we are dealing with a short time series and therefore attempt to keep the model rather small.

An additional variable used in some models (Witt, Martin, 1987) is a proxy for the marketing variable. The rationale behind this is that an increase in agents' information about a country contributes to its "recognisability" and therefore its "attractive-ness". In most models, however, this variable seems to be insignificant in explaining tourism demand.

There is a wide variety of models in the tourism literature for estimating tourism demand and forecasting some measures of tourism consumption in the destination country. Advanced econometric techniques have recently been applied. The problem of non-stationarity was recognised, which led to cointegration analysis and ECM models. In general, econometric tools range from ARIMA and Holt-Winters univariate modelling (Kim, 1999) to 3SLS and 2SLS (Tse, 1999, Kim, Uysal, 1998), and ECM models (Jensen, 1998, Lathiras, Siriopoulos, 1998, Kulendran, Wilson, 2000). Currently the ECM technique is not an issue for Croatia due to the length of the available

⁵ i.e. tourism departures from origin country as a share of total population.

⁶ IPK International, 1998, pp. 12 and 15.

time series, which is heavily reduced due to large series breaks in 1990-1993 (war) and 1993 (stabilisation programme bringing four-digit inflation down to single digit inflation).

3 Model Description

A simple demand model is defined in which foreign tourist arrivals represent the quantity demanded for the Croatian tourism product by various emission countries. This quantity is a function of income and prices.

Long-term income is approximated by the country's real GDP. We do not use real disposable income in the equation since such data is unavailable for transition countries, which represent an important share of origin countries. Nor do we apply average wages or earnings as an explanatory variable because public forecasts for this specific variable are not available. The GDP variable, on the other hand, is forecast not only by the local central bank, but also, for example, by various investment banks. The variety of forecasts enables a range of possible projections and simulations.

The price variable is determined by the relative price between two countries corrected for the nominal exchange rate. However, to what extent are foreign tourists aware of the inflation rate in the host country? One could argue that the inflation component enters the model through agents' perceptions of whether the host destination is "expensive" or "cheap".⁷ The second determinant for the price component is the nominal exchange rate, which is the most easily accessible information for a relative price comparison between destinations.⁸ In other words, the price component of the model is given by the real exchange rate.

First, an OLS model was estimated which attempts to relate arrivals to long-term income and the real exchange rate, as defined in (1):

$$\ln A_{jt} {}_{j0} {}_{j1} \ln GDPr_{j,t} {}_{j2} \ln \frac{Pf_{j,t}FXn_{j,t}}{Pd_t} {}_{t}$$

$$D_{Storm} {}_{2}D_{Kosovo} {}_{3}D_1 {}_{4}D_2 {}_{5}D_3 {}_{e_{jt}}$$

$$(1)$$

where A_{jt} represents arrivals from country j in quarter t, $GDPr_{jt}$ denotes real GDP from country j in quarter t, Pf_{jt} and Pd_t stand for the foreign and domestic CPI respectively, D_{Storm} embodies a dummy for the military action "Storm" (Q3/1995) and D_{Kosovo} a dummy for the Kosovo crisis (Q2/1999-Q4/1999), and D_1 to D_3 represent usual seasonal dummies. One would expect a positive relation between income and the quantity demanded. A negative relation would suggest that Croatia, as a host destination, represents an inferior good for certain European markets – as income increases less of "Croatia's coast" will be demanded. The price variable is expected to be negatively related to the demanded quantity of the good, as shown in (2):

⁷ For first-time holiday-makers to a destination, the prices for wine, milk, bread, average meal etc. are usually given in touroperator's brochures or result from experiences of family/friends who have visited the country.

⁸ Detailed explanation regarding the intuition and treatment of these variables in this and other international articles is given in Stučka (2000).

$$\frac{A_t}{GDPr_{j,t}} \quad 0; \frac{A_t}{\underbrace{Pf_{j,t}FXn_{j,t}}_{Pd_t}} \quad 0;$$
(2)

Next, the OLS model was estimated using seasonally unadjusted data. The elasticities obtained were then compared to the results when seasonally adjusted data (X11 technique) are employed and no seasonal dummies are used. However, it should be borne in mind that the use of X11 violates certain econometric properties⁹ due to the nature of X11 estimation.

Once the OLS coefficients were obtained, an SUR estimation was undertaken. Although it has been shown, using Monte Carlo simulations (Morley, 1997), that OLS estimators seem to be consistent, we compared both techniques for coefficient and forecasting efficiency. Seemingly unrelated regression estimation represents a system of equations, which are related through the cross-equation covariance of the error (Zellner, 1962). The gain in efficiency from using the SUR estimator increases with the correlation between equation errors and decreases with the correlation between equation regressors. Before one turns to empirical results, a brief description of the data is given. The rationale for applying SUR lies in the fact that common factors might exist (weather, marketing spending etc.) that influence all the equations at the same time and induce a correlation between the equations' error terms.

4 Data Description

Quarterly data was used, starting with Q4/1993 and ending with Q2/2000. The reason for starting at the end of 1993 is that a stabilisation programme that tamed inflation was introduced in Croatia in October 1993. Utilising data prior to the programme would lead to heavy distortion, especially in the real exchange rate variable.

The foreign tourist arrival data is from the five main home¹⁰ countries: Germany, Italy, Slovenia, the Czech Republic and Austria. These account for around 72%-79% of total arrivals on an annual basis (see Table 1). The data was taken from the CBS¹¹ database.

The data for nominal GDP was taken from the IFS series (January 2001, version 1.1.53) in billions of local currency, whilst Slovenian data was taken from the Bank of Slovenia Bulletin. The nominal spot exchange rates (expressed domestic currency per 100 units of foreign currency) were taken from the Croatian National Bank's (CNB) database and represent end of period data. Relative prices were estimated using for-

⁹ Since X11 seasonally adjusts data by using information from t-1 and t+1. Hence, technical information contained in seasonally adjusted variables at time t are utilised from t-1 and t+1, violating BLUE properties.

¹⁰ The home country is the foreign market from which tourists come to Croatia, whereas the host country is the tourism destination, i.e. Croatia.

¹¹ CBS – Central Bureau of Statistics.

	1993	1994	1995	1996	1997	1998	1999	2000
Italy	258.2	357.0	193.8	467.1	688.0	750.8	538.3	886.5
Germany	194.3	355.7	211.0	448.7	640.0	720.6	531.3	919.8
Slovenia	229.7	294.4	299.9	437.6	577.9	637.7	689.9	818.9
Czech Rep.	238.3	435.2	119.1	345.5	579.1	498.5	415.3	697.5
Austria	249.0	362.5	193.1	341.5	447.4	456.9	374.3	511.9
Hungary	90.7	128.8	34.1	84.9	126.7	137.7	141.4	238.8
Slovakia	21.6	59.0	27.1	83.9	153.9	161.7	107.6	183.7
Poland	6.6	17.9	10.3	35.6	97.8	131.0	104.9	275.0
Netherlands	17.0	29.8	25.3	41.7	65.0	88.3	72.6	100.1
Total foreign arrivals	1521.0	2292.8	1324.5	2649.4	3834.2	4111.5	4239.3	5337.6
% of main five markets	76.9	78.7	76.8	77.0	76.5	74.5	78.0	71.8

Table 1: Arrivals in Croatia from 1993 to 2000, on annual basis, in thousand

Source: CBS.

eign and domestic CPI; the data for foreign CPI was taken from the IFS, whereas domestic CPI was taken from the CNB database.

5 Estimation Results

Three types of results are presented in Tables 2-3. Table 2 contains OLS estimation results with the unadjusted dependent variable. Table 3 offers OLS results for seasonally adjusted arrivals in the attempt to evaluate the influence of high seasonality on the estimated coefficients and the robustness of the coefficients. Finally, Table 4 summarises the results from the SUR model with an unadjusted dependent variable.

Table 2: OLS coefficients without seasonally adjusted dependent variables (standard errors in parenthesis)

OLS – unadjusted dependent variable										
AR	GDPr	padj	Dstorm	DKosovo	C	R2adjusted	F-statistic			
AUSTRIA	-0.18	-3.11	-0.63	-	22.41	0.98	260.46			
(SE)	(0.90)	(0.97)	(0.12)		(5.02)					
CZECH R.	-1.90	2.42	-0.98	-0.35	14.07	0.98	189.97			
(SE)	(1.87)	(0.91)	(0.26)	(0.19)	(3.14)					
GERMANY	1.25	-6.37	-0.62	-	44.79	0.98	281.49			
(SE)	(1.71)	(1.05)	(0.13)		(9.09)					
ITALY	4.94	-0.27	-0.81	-0.39	-30.16	0.93	50.45			
(SE)	(1.71)	(1.35)	(0.24)	(0.18)	(13.7)					
SLOVENIA	3.83	-2.85	-0.07	_	24.37	0.98	228.47			
(SE)	(0.71)	(1.37)	(0.17)		(7.12)					

Source: Author's estimates.

AR_SA	GDPr	padj	Dstorm	DKosovo	C	R2adjusted	F-statistic
AUSTRIA	1.19	-2.36	-0.62		18.49	0.74	25.14
(SE)	(0.50)	(0.80)	(0.11)		(3.63)		
CZECH R.	-0.71	2.99	-0.88	-0.33	17.12	0.55	8.98
(SE)	(1.16)	(0.89)	(0.23)	(0.18)	(2.32)		
GERMANY	3.23	-5.97	-0.57		39.59	0.84	49.0
(SE)	(1.70)	(1.05)	(0.13)		(9.03)		
ITALY	6.71	0.32	-0.75	-0.33	-45.96	0.61	14.11
(SE)	(1.39)	(1.05)	(0.17)	(0.14)	(11.17)		
SLOVENIA	3.82	-2.3	-0.17		25.05	0.71	22.48
(SE)	(0.58)	(1.13)	(0.14)		(5.62)		

Table 3: OLS coefficients with seasonally adjusted dependent variables (standard errors in parenthesis)

Source: Author's estimates.

Table 4: SUR coefficients without seasonally adjusted dependent variables (standard errors in parenthesis)

	SUR procjena – neusklađena ovisna varijabla								
AR	GDPr	padj	Dstorm	DKosovo	C	R2adjusted			
AUSTRIA	0.93	-2.15	-0.69	-009	16.64	0.98			
(SE)	(0.58)	(0.60)	(0.10)	(0.07)	(3.16)				
CZECH R.	-1.36	2.1	-1.03	-0.33	12.9	0.98			
(SE)	(1.06)	(0.66)	(0.21)	(0.15)	(1.84)				
GERMANY	3.93	-4.99	-0.7	-0.14	30.91	0.98			
(SE)	(1.17)	(0.67)	(0.11)	(0.08)	(5.94)				
ITALY	5.18	-1.33	-0.87	-0.3	-28.38	0.92			
(SE)	(1.25)	(0.87)	(0.19)	(0.14)	(10.14)				
SLOVENIA	3.31	-1.41	-0.14	0.06	-22.4	0.97			
(SE)	(0.56)	(1.01)	(0.15)	(0.11)	(5.84)				

Source: Author's estimates.

The coefficients for Germany, Italy, Slovenia and Austria¹² show the expected signs consistently – income is positively related to arrivals and the relative adjusted price is negatively related to arrivals. The estimated coefficients for the Czech Republic show a different but consistent trend: income is negatively related to arrivals in all three estimates, although the coefficients are insignificant. This would indicate that Croatia represents an inferior good for Czech tourists, i.e. the more their long term in-

¹² In the unadjusted OLS equation for Austria (Table 2) income elasticity is negative, however insignificant, whilst in the adjusted OLS equation for Italy (Table 3) price elasticity is positive, although insignificant.

come rises, the relatively fewer tourist will come to Croatia. The coefficients in both OLS models seem to be reasonably robust. Similar results relating to inferior goods were obtained by Jensen (1998) for Denmark and the USA, as well as by Lathiras, Siriopoulos (1998) for Greece and Holland.

On average, the highest income elasticity concerns Italy (around 5-6) and Slovenia (around 3-4), whereas Austria's demand seems to be rather inelastic with respect to income (around 1). In other research, income elasticities range from -0.52 to 7.8 (Lathiras, Siriopoulos, 1998) and from -0.6 to 8.98 (Jensen, 1998). German tourists seem to be the most price sensitive (around -5), whilst tourists from Italy seem to have a relatively inelastic demand for the Croatian tourism product. As expected, the military action "Storm" had a significant impact on tourism in Croatia; only the Slovenian market did not show a significant response, mirroring the superior information set they possessed. OLS estimates of the dummy variable that takes account of the Kosovo crisis are reported only for relevant markets¹³ – the Czech Republic and Italy. However, in the SUR context, the Kosovo crisis seemed to have significantly affected Croatia's tourism market: only Slovenia and Austria do not seem to have been influenced by the NATO military activity in the region, which is perhaps surprising for the Austrian market. There is also the strong impact of seasonality; once seasonality is removed from the data, the adjusted R² decreases by a large amount and reflects a much lower explanatory power of the independent variables.

It is debatable whether there is sufficient variation in the data for the SUR model, for the covariance matrix of the regression parameters demonstrates near-singularity.

For the purpose of forecasting, special attention is placed on standard errors of the coefficients beside the estimated elasticities. Throughout the sample, the standard errors obtained using the SUR results are lower than the standard errors in both OLS estimations. In other words, SUR coefficients seem to be more accurate and should yield better forecasts.

We continue by evaluating the forecasting power of the two models, OLS and SUR, utilising the standard statistics on the forecasting error given in Table 5.

	Aus	tria	Slov	enia	Czec	ch R.	Gern	nany	lta	aly
	OLS	SUR	OLS	SUR	OLS	SUR	OLS	SUR	OLS	SUR
Mean	1,379	76	4,648	2,631	1,589	-1,274	2,040	912	7,335	3,985
Median	-140	-121	85	-226	-21	74	90	-611	203	-728
SSE (in million)	5,517	4,607	16,944	15,202	22,834	23,506	15,719	13,436	34,867	28,421
MSE (in thousand)	212	177	652	585	878	904	605	517	1,341	1,093
MAE	9,718	8,792	15,472	15,714	16,390	16,415	14,927	13,458	22,749	22,219
SDE	9,879	8,798	16,871	16,424	16,926	16,996	15,243	13,528	24,719	22,874
Skew	0.629	0.025	1.152	0.246	0.046	-0.787	0.889	0.284	1.402	0.570
MAPE	10.4	10.5	15.5	15.3	21.2	21.4	12.0	12.3	19.8	20.6

Table 5: Comparison of the forecasting accuracy of OLS and SUR¹⁴

13 i.e. with significance at the 10% level.

14 SSE – sum of squared errors, MSE – mean square error, MAE – mean absolute error, SDE – standard deviation of the error, MAPE – mean absolute percentage error.

Figure 2 Inside sample forecast errors for the OLS and SUR model – Slovenia

Figure 4 Inside sample forecast errors for the OLS and SUR model – Germany

Figure 3 Inside sample forecast errors for the OLS and SUR model – the Czech Republic

Figure 5 Inside sample forecast errors for the OLS and SUR model – Austria

Figure 6 Inside sample forecast errors for the OLS and SUR model – Italy

Various absolute and relative measures of forecasting accuracy are shown in Table 5. It was found that the absolute error mean is much lower in the case of SUR models. Moreover, the standard deviation of the error (SDE) and the sum of squared errors (SSE) of the OLS model are consistently higher than the SUR forecasting errors, except in the case of the Czech Republic. The fact that the OLS model is more biased towards overstating future outcomes is shown by the estimates of the skew. On the other hand, according to the MAPE criterion, the choice of model is not clear-cut, for the differences in forecasting errors are minor. MAPE estimates seem to be inaccurate at the level of 10%-12% for Austria and Germany and at around 20% for Italy and the Czech Republic. In summary, taking into account the various measures of forecasting accuracy, it seems that the SUR model yields better forecasts.

6 Conclusion

This paper presents a demand model for the Croatian tourism product. The quantity demanded is defined as the number of tourist arrivals from the five main home countries, which account for around 72%-78% of total foreign annual arrivals. The model describes arrivals to be a function of the home country's real GDP and the real exchange rate. OLS and SUR estimation techniques were used to evaluate the forecasting power of the model. Based on several measures of forecast accuracy, it seems that the SUR model yields more precise predictions of foreign arrivals. Further research in this field could include a more detailed approach to the seasonal adjustment of the data, which could then be applied to the SUR model. An alternative way of obtaining more accurate estimates is to treat the system of presented data as a panel and allow fixed country effects to capture any heterogeneity. In terms of additional explanatory variables, a substitution variable modelling the influence of the weather could also be taken into account, bearing in mind the proximity of the origin destinations and the high share of foreign camping arrivals in Croatia.

Literature

- Akis, S. (1998): A Compact Econometric Model of Tourism Demand for Turkey, Tourism Management.
- Athiyaman, A. (1997): Knowledge Development in Tourism: Tourism Demand Research, Tourism Management.
- Ayres, R. (1998): Demand Theory Reconsidered: Reflections on the Demand for Tourism in Cyprus, Tourism Economics 4 (4), pp. 353-365.
- Bahovec, V. and N. Erjavec (1999): ARIMA model broja noćenja turista u Republici Hrvatskoj, Ekonomski pregled br. 7-8, Zagreb.
- Bellulo, A. and D. Križman (2000): Utjecaj promjena u dohocima glavnih emitivnih zemalja na turistički promet u Hrvatskoj, Ekonomski pregled br. 51 (7-8).
- Blough, S.R. (1992): The Relationship between Power and Level for Generic Unit Root Tests in Finite Samples, Journal of Applied Econometrics, Vol. 7.
- Chadee, D. and Z. Mieczkowski (1987): An Empirical Analysis of the Effects of the Exchange Rate on Canadian Tourism, Journal of Travel Research, Vol. 26.
- Crouch, G. (1995): The Study of International Tourism Demand: A Survey of Practise, Journal of Travel Research.
- Darnell, A.C. (1995): A Dictionary of Econometrics, Edward Elgar, Hants, England.
- Frechtling, D.C. (1996): Practical Tourism Forecasting, Butterworth.
- Galinec, D. (2000): Statističko evidentiranje pozicije putovanja-turizam u platnoj bilanci Republike Hrvatske, Hrvatska narodna banka, Istraživanja I 3, May.
- Harris, R.I.D. (1995): Using Cointegration Analysis in Econometric Analysis, Prentice Hall, Harvester Wheatsheaf, London.
- IPK International (1998): European Travel Monitor ETC Pool Report 1998, IPK International World Travel Monitor Company Ltd., Dublin.
- Jensen, T.C. (1998): Income and Price Elasticities by Nationality for Tourists in Denmak, Tourism Economics 4 (2), pp. 101-130.
- Kim, J.H. (1999): Forecasting Monthly Tourist Departures from Australia, Tourism Economics 5 (3), pp. 277-291.
- Kim, J.M. (2000): Report: A Study of Tourist Demand and Accommodation in the Mt Paekdusan/Changbaishan Area, Tourism Economics 6 (1), pp. 73-83.
- Kolić, A. (1996): Odabrani modeli kratkoročnog prognoziranja u turizmu, Turizam.
- Kulendran, N. and K. Wilson (2000): Modelling Business Travel, Tourism Economics 6 (1), pp. 47-59.
- Lathiras, P. and C. Siriopoulos (1998): *The Demand for Tourism to Greece: A Cointegration Approach*, Tourism Economics 4 (2), pp. 171-185.
- Limm, D. (1997): An Econometric Classification and Review of International Tourism Demand Models, Tourism Economics.
- Little, J.S. (1980): International Travel in the US Balance of Payments, New England Economic Review, May/June.
- Loeb, P.D. (1982): International Travel to the United States: An Econometric Evaluation, Annals of Tourism Research, Vol. 9.
- Makridakis, S., S. Wheelwright and V. McGee (1983): *Forecasting, Methods and Applications*, John Wiley and Sons, New York.
- Martin, C.A. and S.F. Witt (1987): Tourism Demand Forecasting Models: Choice of Appropriate Variable to Represent Tourists' Cost of Living, Tourism Management, Vol. 8.
- Morley, C.L. (1997): An Evaluation of the Use of OLS for Estimating Tourism Demand Models, Journal of Tourism Research, spring.
- Morley, C.L. (2000): Demand Modeling Methodologies: Integration and Other Issues, Tourism Economics 6 (1), pp. 5-19.
- Pyo, S.S., M. Uysal and M.W. Mc Lellan (1991): A Linear Expenditure Model for Tourism Demand, Annals of Tourism Research, Vol. 18.
- Sheldon, P. (1993): Forecasting Tourism: Expenditures versus Arrivals, Journal of Travel Research.
- Smeral, E. (1988): *Tourism Demand, Economic Theory and Econometrics An Integrated Approach*, Journal of Travel Research, spring.
- Smeral, E. (1994): Tourismus 2005, WIFO.
- Smeral, E. and S. Witt (1996): *Econometric Forecasts of Tourism Demand to 2005*, Annals of Tourism Research.

- Stučka, T. (2000): *OLS model fizičkih pokazatelja inozemnog turističkog prometa na hrvatskom tržištu*, Hrvatska narodna banka, Istraživanja I – 7, September.
- Tse, R.Y.C. (1998): Do More Tourists Lead to Higher Levels of Consumption?, Tourism Economics 4 (3), pp. 233-240.
- Tse, R.Y.C. (1999): A Simultaneous Model of Tourism Flow, Spending and Receipts, Tourism Economics 5 (3), pp. 251-260.
- Turner, L. and P. Kulendrom (1995): Forecasting New Zealand Tourism Demand with Disaggregated Data, Tourism Economics.
- Turner, L, Y. Reisinger and S.F. Witt (1998): Tourism Demand Analysis Using Structural Equations Modelling, Tourism Economics 4 (4), pp. 301-323.
- Var, T., G. Mohammad and O. Icoz (1990): A Tourism Demand Model, Annals of Tourism Research, Vol. 17.
- Var, T., G. Mohammad and O. Icoz (1990): Factors Affecting International Tourism Demand for Turkey, Annals of Tourism Research, Vol. 17.
- White, K.J. (1985): An International Travel Demand Model: US Travel to Western Europe, Annals of Tourism Research, Vol. 12.
- Witt, S. and Ch. Martin (1987a): *Economic Models for Forecasting International Tourism Demand*, Journal of Travel Research.
- Witt, S. and Ch. Martin (1987b): International Tourism Demand Models Inclusion of Marketing Variables, Tourism Management, March.
- Youngtae, K. and M. Uysal (1998): *Time-dependent Analysis for International Hotel Demand in Seoul*, Tourism Economics 4 (3), pp. 252-263.
- Zellner, A. (1962): An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests of Aggregation Bias, Journal of the American Statistical Association 57.

Appendix

Dependent Variable: LOG(AR_A) Method: Least Squares Date: 03/09/01 Time: 15:07 Sample(adjusted): 1994:1 2000:2 Included observations: 26 after adjusting endpoints								
Variable	Coefficient	Std. Error	t-Statistic	Prob.				
LOG(GDPN A/CPI A)	-0.180053	0.903799	-0.199218	0.8442				
LOG(PADJ A)	-3.111161	0.973137	-3.197043	0.0047				
DOLUJA	-0.630292	0.121625	-5.182255	0.0001				
SEZONA1	-0.260651	0.140755	-1.851801	0.0797				
SEZONA2	1.721153	0.096895	17.76300	0.0000				
SEZONA3	2.407296	0.090872	26.49101	0.0000				
C	22.41443	5.026526	4.459229	0.0003				
R-squared	0.987988	Mean dependent var	10.84	4131				
Adjusted R-squared	0.984195	S.D. dependent var	1.14	47953				
S.E. of regression 0.144317 Akaike info criterion -0.808812								
Sum squared resid 0.395718 Schwarz criterion -0.470094								
Log likelihood	17.51455	F-statistic	260.4	694				
Durbin–Watson stat	1.637021	Prob(F-statistic)	0.0	00000				

Dependent Variable: LOG(AR_CZ) Method: Least Squares Date: 03/09/01 Time: 15:00 Sample(adjusted): 1994:1 2000:3 Included observations: 27 after adjusting endpoints									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
LOG(GDPN_CZ/CPI_CZ) LOG(PADJ_CZ) DOLUJA SEZONA1 SEZONA2 SEZONA3 C	-1.388378 1.623789 -0.999230 -0.513489 3.391452 4.882942 12.15854	1.952021 0.913798 0.278742 0.234911 0.194682 0.203142 3.124851	-0.711251 1.776967 -3.584786 -2.185885 17.42047 24.03706 3.890919	0.4851 0.0908 0.0019 0.0409 0.0000 0.0000 0.0000 0.0009					
R–squared Adjusted R–squared S.E. of regression Sum squared resid Log likelihood Durbin–Watson stat	0.983511 0.978564 0.338775 2.295367 -5.034595 1.337545	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)	9.8 2.3 0.8 1.2 198.8 0.0	79869 13881 91452 27409 206 00000					

Dependent Variable: LOG(AR_D) Method: Least Squares Date: 03/09/01 Time: 15:00 Sample(adjusted): 1994:1 2000:3 Included observations: 27 after adjusting endpoints									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
LOG(GDPN D/CPI D)	1.252210	1.715713	0.729848	0.4739					
LOG(PADJ D)	-6.369480	1.058393	-6.018068	0.0000					
DOLUJA	-0.620487	0.137416	-4.515385	0.0002					
SEZONA1	-0.680254	0.094992	-7.161207	0.0000					
SEZONA2	1.546654	0.094505	16.36579	0.0000					
SEZONA3	2.507745	0.091724	27.34010	0.0000					
C	44.79645	9.091206	4.927448	0.0001					
R-squared	0.988297	Mean dependent var	11.0	8255					
Adjusted R-squared	0.984786	S.D. dependent var	1.33	34209					
S.E. of regression 0.164566 Akaike info criterion -0.552594									
Sum squared resid 0.541640 Schwarz criterion -0.216637									
Log likelihood	14.46003	F-statistic	281.49	987					
Durbin–Watson stat	1.838002	Prob(F-statistic)	0.00	00000					

Dependent Variable: LOO Method: Least Squares Date: 03/09/01 Time: 1 Sample(adjusted): 1994 Included observations: 2	G(AR_I) 5:01 :1 2000:2 :6 after adjusting endpo	ints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN I/CPI I)	3.892131	1.701636	2.287288	0.0338
LOG(PADJ I)	-0.827914	1.398168	-0.592142	0.5607
DOLUJA	-0.814465	0.248681	-3.275133	0.0040
SEZONA1	-0.617408	0.181289	-3.405650	0.0030
SEZONA2	1.073061	0.176300	6.086551	0.0000
SEZONA3	2.201666	0.178001	12.36885	0.0000
С	-19.37349	13.10600	-1.478215	0.1557
R-squared	0.942797	Mean dependent var	11.10	0297
Adjusted R-squared	0.924733	S.D. dependent var	1.12	21411
S.E. of regression	0.307657	Akaike info criterion	0.70)5142
Sum squared resid	1.798404	Schwarz criterion	1.04	3860
Log likelihood	-2.166844	F-statistic	52.19	192
Durbin–Watson stat	1.508786	Prob(F-statistic)	0.00	0000

Dependent Variable: LOG(AR_SLO) Method: Least Squares Date: 03/09/01 Time: 15:01 Sample(adjusted): 1994:1 2000:3 Included observations: 27 after adjusting endpoints

1. 3. 1							
Variable	Coefficient	Std. Error	t-Statistic	Prob.			
LOG(GDPR_SLO)	3.830130	0.719778	5.321266	0.0000			
LOG(PADJ_SLO)	-2.850993	1.371376	-2.078929	0.0507			
DOLUJA	-0.069393	0.179270	-0.387088	0.7028			
SEZONA1	0.153001	0.129060	1.185509	0.2497			
SEZONA2	2.233883	0.124451	17.94986	0.0000			
SEZONA3	3.579903	0.120459	29.71895	0.0000			
C	-24.37190	7.124925	-3.420653	0.0027			
R-squared	0.985620	Mean dependent var	10.7	9826			
Adjusted R-squared	0.981306	S.D. dependent var	1.5	72129			
S.E. of regression	0.214951	Akaike info criterion	-0.0	18403			
Sum squared resid	0.924076	Schwarz criterion	0.3	17555			
Log likelihood	7.248434	F-statistic	228.4	708			
Durbin–Watson stat	2.150989	Prob(F-statistic)	0.0	00000			

Dependent Variable: LOG(AR_ASA) Method: Least Squares Date: 03/09/01 Time: 15:16 Sample(adjusted): 1994:1 2000:2 Included observations: 26 after adjusting endpoints									
Variable	Coefficient	Std. Error	t-Statistic	Prob.					
LOG(GDPN_A/CPI_A) LOG(PADJ_A) DOLUJA C	1.194324 -2.357843 -0.617064 18.48813	0.506091 0.807768 0.115466 3.631380	2.359900 -2.918961 -5.344124 5.091215	0.0276 0.0080 0.0000 0.0000					
R–squared Adjusted R–squared S.E. of regression Sum squared resid Log likelihood Durbin–Watson stat	0.774173 0.743378 0.140564 0.434684 16.29362 1.468594	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F–statistic Prob(F–statistic)	11.39 0.27 -0.94 -0.75 25.13 0.00	050 7478 5663 2110 985 0000					

Dependent Variable: LOG(Method: Least Squares Date: 03/09/01 Time: 16 Sample(adjusted): 1994:1 Included observations: 27	AR_CZSA) :39 2000:3 after adjusting endpoint	s		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN_CZ/CPI_CZ)	-0.404756	1.211565	-0.334077	0.7413
LOG(PADJ_CZ)	2.264099	0.839165	2.698038	0.0128
DOLUJA	-0.900333	0.251009	-3.586861	0.0016
C	15.56947	2.264920	6.874180	0.0000
R–squared	0.563505	Mean dependent var	11.51	409
Adjusted R–squared	0.506571	S.D. dependent var	0.44	18054
S.E. of regression	0.314733	Akaike info criterion	0.66	31772
Sum squared resid	2.278314	Schwarz criterion	0.85	33748
Log likelihood	-4.933922	F–statistic	9.85	97486
Durbin–Watson stat	1.225828	Prob(F–statistic)	0.00	90221

Dependent Variable: LOC Method: Least Squares Date: 03/09/01 Time: 1 Sample(adjusted): 1994: Included observations: 2	G(AR_DSA) 5:13 :1 2000:3 :7 after adjusting endpoir	ts		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN D/CPI D)	-9.053729	5.964590	-1.517913	0.1433
LOG(PADJ D)	-4.614855	1.167757	-3.951898	0.0007
DOLUJA	-0.493229	0.128216	-3.846843	0.0009
С	57.81501	11.97230	4.829065	0.0001
TREND	0.045374	0.021220	2.138251	0.0439
R-squared	0.888012	Mean dependent var	11.69	532
Adjusted R-squared	0.867650	S.D. dependent var	0.424629	
S.E. of regression	0.154480	Akaike info criterion	-0.731933	
Sum squared resid	0.525007	Schwarz criterion	-0.491963	
Log likelihood	14.88110	F-statistic	43.61224	
Durbin–Watson stat	2.205474	Prob(F-statistic)	0.00	0000

Dependent Variable: LOO Method: Least Squares Date: 03/09/01 Time: 1 Sample(adjusted): 1994 Included observations: 2	G(AR_ISA) 6:41 :1 2000:2 :6 after adjusting endpo	ints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN_I/CPI_I)	5.638423	1.423718	3.960350	0.0007
LOG(PADJ_I)	-0.189260	1.121706	0.168725	0.8676
DOLUJA	-0.751824	0.195475	3.846128	0.0009
C	-35.15635	10.93200	3.215912	0.0040
R-squared	0.657970	Mean dependent var	11.70	0619
Adjusted R-squared	0.611329	S.D. dependent var	0.41	4192
S.E. of regression	0.258222	Akaike info criterion	0.27	70642
Sum squared resid	1.466926	Schwarz criterion	0.46	64195
Log likelihood	0.481653	F-statistic	14.10	7727
Durbin-Watson stat	1.470751	Prob(F-statistic)	0.00	00024

Dependent Variable: LOG Method: Least Squares Date: 03/09/01 Time: 1 Sample(adjusted): 1994: Included observations: 2	G(AR_SLOSA) 6:42 1 2000:3 7 after adjusting endpo	pints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPR SLO)	3.817809	0.581852	6.561476	0.0000
LOG(PADJ_SLO)	-2.303848	1.135187	-2.029488	0.0541
DOLUJA	-0.166327	0.140814	-1.181177	0.2496
С	-25.05454	5.626488	-4.452962	0.0002
R-squared	0.745718	Mean dependent var	11.72	192
Adjusted R-squared	0.712551	S.D. dependent var	0.33	5437
S.E. of regression	0.179842	Akaike info criterion	-0.45	7518
Sum squared resid	0.743896	Schwarz criterion	-0.26	5542
Log likelihood	10.17649	F-statistic	22.48	358
Durbin–Watson stat	2.076566	Prob(F-statistic)	0.00	0001

With Kosovo dummy

Dependent Variable: LOC Method: Least Squares Date: 03/13/01 Time: 1 Sample(adjusted): 1994: Included observations: 2	G(AR_A) 3:41 :1 2000:2 6 after adjusting endpoin	ts		
Variable	Coefficient	Std. Error	t–Statistic	Prob.
LOG(GDPN A/CPI A)	0.162599	1.158560	0.140346	0.8899
LOG(PADJ A)	-2.906220	1.078085	-2.695724	0.0148
DOLUJA	-0.642913	0.126793	-5.070573	0.0001
SEZONA1	-0.220186	0.165804	-1.327991	0.2008
SEZONA2	1.737641	0.104490	16.62979	0.0000
SEZONA3	2.421093	0.096948	24.97315	0.0000
C	20.98558	5.904554	3.554134	0.0023
D_KOS2	-0.049753	0.101778	-0.488843	0.6309
R-squared	0.988146	Mean dependent var	10.84131	
Adjusted R-squared	0.983536	S.D. dependent var	1.147953	
S.E. of regression	0.147297	Akaike info criterion	-0.745077	
Sum squared resid	0.390533	Schwarz criterion	-0.357971	
Log likelihood	17.68601	F-statistic	214.3511	
Durbin–Watson stat	1.714904	Prob(F-statistic)	0.00	00000

Dependent Variable: LOG Method: Least Squares Date: 03/13/01 Time: 13 Sample(adjusted): 1994:1 Included observations: 27	AR_CZ) ::42 : 2000:3 / after adjusting endpoin	ts		
Variable	Coefficient	Std. Error	t–Statistic	Prob.
LOG(GDPN_CZ/CPI_CZ)	-1.900448	1.872776	-1.014776	0.3230
LOG(PADJ_CZ)	2.419592	0.972758	2.487352	0.0223
DOLUJA	-0.982077	0.264496	-3.713019	0.0015
SEZONA1	-0.541734	0.223312	-2.425904	0.0254
SEZONA2	3.391063	0.184612	18.36858	0.0000
SEZONA3	4.888157	0.192656	25.37241	0.0000
C	14.07458	3.148534	4.470201	0.0003
D_KOS2	-0.354848	0.197096	-1.800381	0.0877
R-squared	0.985914	Mean dependent var	9.8	79869
Adjusted R-squared	0.980724	S.D. dependent var	2.3	13881
S.E. of regression	0.321252	Akaike info criterion	0.8	08010
Sum squared resid	1.960849	Schwarz criterion	1.1	91962
Log likelihood	-2.908140	F–statistic	189.9	792
Durbin-Watson stat	1.556751	Prob(F–statistic)	0.0	00000

Dependent Variable: LOG Method: Least Squares Date: 03/13/01 Time: 1 Sample(adjusted): 1994: Included observations: 2	i(AR_D) 3:40 1 2000:3 7 after adjusting endpoi	nts		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN D/CPI D)	2.130611	2.270284	0.938478	0.3598
LOG(PADJ D)	-6.027887	1.215164	-4.960556	0.0001
DOLUJA	-0.640628	0.143575	-4.461969	0.0003
SEZONA1	-0.677083	0.096679	-7.003402	0.0000
SEZONA2	1.543684	0.096168	16.05193	0.0000
SEZONA3	2.507964	0.093217	26.90472	0.0000
C	40.88398	11.28270	3.623599	0.0018
D_KOS2	-0.071905	0.119019	-0.604145	0.5529
R-squared	0.988518	Mean dependent var	11.08	3255
Adjusted R-squared	0.984287	S.D. dependent var	1.334209	
S.E. of regression	0.167243	Akaike info criterion	-0.497548	
Sum squared resid	0.531431	Schwarz criterion	-0.113597	
Log likelihood	14.71690	F-statistic	233.67	758
Durbin–Watson stat	1.958542	Prob(F-statistic)	0.00	00000

Dependent Variable: LOO Method: Least Squares Date: 03/13/01 Time: 1 Sample(adjusted): 1994 Included observations: 2	G(AR_I) 3:42 :1 2000:2 :6 after adjusting endpoi	nts		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPN I/CPI I)	4.941690	1.712316	2.885969	0.0098
LOG(PADJ I)	-0.272038	1.358302	-0.200278	0.8435
DOLUJA	-0.813877	0.235248	-3.459653	0.0028
SEZONA1	-0.602708	0.171691	-3.510420	0.0025
SEZONA2	1.067520	0.166805	6.399799	0.0000
SEZONA3	2.202682	0.168386	13.08111	0.0000
C	-30.16210	13.77408	-2.189773	0.0420
D_KOS2	-0.329105	0.183065	-1.797750	0.0890
R-squared	0.951505	Mean dependent var	11.10	297
Adjusted R-squared	0.932645	S.D. dependent var	1.121411	
S.E. of regression	0.291038	Akaike info criterion	0.616932	
Sum squared resid	1.524652	Schwarz criterion	1.004038	
Log likelihood	-0.020111	F-statistic	50.45	270
Durbin–Watson stat	1.994044	Prob(F-statistic)	0.00	0000

Dependent Variable: LOO Method: Least Squares Date: 03/13/01 Time: 1 Sample(adjusted): 1994 Included observations: 2	G(AR_SLO) 3:43 :1 2000:3 :7 after adjusting endpoi	nts		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOG(GDPR SLO)	3.777055	0.728217	5.186718	0.0001
LOG(PADJ SLO)	-3.334136	1.499408	-2.223636	0.0385
DOLUJA	-0.047463	0.182590	-0.259945	0.7977
SEZONA1	0.144258	0.130494	1.105472	0.2828
SEZONA2	2.240898	0.125709	17.82609	0.0000
SEZONA3	3.584249	0.121514	29.49663	0.0000
C	-20.75029	8.399651	-2.470375	0.0231
D_KOS2	0.118637	0.142759	0.831030	0.4163
R-squared	0.986124	Mean dependent var	10.79826	
Adjusted R-squared	0.981012	S.D. dependent var	1.572129	
S.E. of regression	0.216633	Akaike info criterion	0.019969	
Sum squared resid	0.891665	Schwarz criterion	0.403920	
Log likelihood	7.730424	F-statistic	192.9013	
Durbin–Watson stat	2.135990	Prob(F-statistic)	0.00	00000

System: UNTITI FD				
Estimation Method: See	mingly Unrelated Regress	sion		
Date: 03/13/01 Time: 1	4:02			
Sample: 1994:1 2000:3				
Included observations: 2	7			
Total system (balanced)	observations 133			
	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.932680	0.588751	1.584166	0.1166
C(2)	-2.159025	0.604723	-3.570270	0.0006
C(3)	-0.691310	0.100545	-6.875596	0.0000
C(4)	-0.128729	0.101758	-1.265047	0.2090
C(5)	1.772444	0.077420	22.89382	0.0000
C(6)	2.475367	0.064179	38.56988	0.0000
C(7)	16.64792	3.160957	5.266734	0.0000
C(36)	-0.098316	0.071689	-1.371409	0.1735
C(8)	3.939640	1.176069	3.349838	0.0012
C(9)	-4.999479	0.672815	-7.430684	0.0000
C(10)	-0.702081	0.114145	-6.150/96	0.0000
L(11)	-0.669537	0.080612		0.0000
L(12)	1.535535	0.080480	19.07903	0.0000
C(13)	2.004017	5.0/2102	50.09240	0.0000
C(14)	0 1/0/22	0.083603	1 677056	0.0000
C(15)	-0.140433	1 251051	4 141808	0.0907
C(16)	_1 337850	0.878417	-1 523024	0.0001
C(17)	-0.874914	0.193559	-4 520151	0.0000
C(18)	-0.639390	0.141370	-4.522802	0.0000
C(19)	1.060153	0.138719	7.642432	0.0000
C(20)	2.249208	0.135106	16.64774	0.0000
C(21)	-28.38522	10.23686	-2.772844	0.0067
C(38)	-0.302710	0.146292	-2.069212	0.0413
C(22)	-1.360740	1.062772	-1.280369	0.2036
C(23)	2.106980	0.663440	3.175842	0.0020
C(24)	-1.038432	0.216339	-4.800018	0.0000
C(25)	-0.516795	0.170885	-3.024223	0.0032
C(26)	3.381748	0.154651	21.86692	0.0000
C(27)	4.904853	0.149189	32.87668	0.0000
C(28)	12.92908	1.846086	7.003511	0.0000
C(39)	-0.338574	0.156809	-2.159153	0.0334
C(29)	3.176050	0.531749	5.972834	0.0000
C(30)	-1./41580	1.009458	-1./25262	0.0878
C(31)	-0.129764	0.149078	-0.8/0446	0.3863
C(32)	0.131243	0.108/34	1.200/93	0.2300
C(33)	2.210030	0.104934	21.12307	0.0000
C(34)	_22 40417	6 484933	_3 454803	0.0000
C(40)	0.068349	0.115045	0 594104	0.5539
		0.110010	0.007.40	0.0000
Determinant residual cov	variance		6.68E–10	
Equation: LOG(AR_A) =	C(1)*LOG(GDPN_A/CPI	A) + C(2)		
$*LOG(PADJ_A) + C(3)*$	DOLUJA + C(4)*SEZON	A1 + C(5)		
*SEZONA2 + C(6)*SEZ	DNA3 + C(7) + C(36)*D	_KOS2		
Observations: 26				
B-squared	0.987652	Mean dependent var	10.84	131
Adjusted R-squared	0.982850	S.D. dependent var	1.14	7953
S.E. of regression	0.150331	Sum squared resid	0.40	6792
Durbin–Watson stat	1.760960			
Equation: LOG(AB_D) -		D) + C(0)		
*I OG(PAD.I D) +	C(10)*DOUU.IA + C(11)*	SF70NA1 + C(12)		
*SF70NA2 + C(13)*SEZONA3 + C(14) + C(14)	(37)*D KOS2		
Observations: 27	,	,		
D. aguarad	0.007051	Maan danar daritira	11.00	255
n-squared	0.98/951	S D donandont vor	11.08	200 4200
S E of regression	0.903012	Sum squared resid	1.33	4203
Durbin-Watson stat	2.041652	Sum Squared resid	0.00	1010

Equation: LOG(AR_I) = (*LOG(PADJ_I) + C *SEZONA2 + C(20 Observations: 26	C(15)*LOG(GDPN_I/CPI_I (17)*DOLUJA + C(18)*S)*SEZONA3 + C(21) + C) + C(16) SEZONA1 + C(19) C(38)*D_KOS2	
R–squared Adjusted R–squared S.E. of regression Durbin–Watson stat	0.949458 0.929803 0.297115 1.801953	Mean dependent var S.D. dependent var Sum squared resid	11.10297 1.121411 1.588995
Equation: LOG(AR_CZ) = *LOG(PADJ_CZ) + C(24 *SEZONA2 + C(27)*SEZ Observations: 27	= C(22)*LOG(GDPN_CZ/C !)*DOLUJA + C(25)*SEZ ZONA3 + C(28) + C(39)*	PI_CZ) + C(23) ONA1 + C(26) *D_KOS2	
R–squared Adjusted R–squared S.E. of regression	0.985734 0.980478 0.323294	Mean dependent var S.D. dependent var Sum squared resid	9.879869 2.313881 1.985864
Durbin–Watson stat 1.5/6999 Equation: LOG(AR_SL0) = C(29)*LOG(GDPR_SL0) + C(30) *LOG(PADJ_SL0) + C(31)*DOLUJA + C(32)*SEZONA1 + C(33) *SEZONA2 + C(34)*SEZONA3 + C(35) + C(40)*D_KOS2 Observations: 27			
R–squared Adjusted R–squared S.E. of regression Durbin–Watson stat	0.985238 0.979799 0.223449 2.049009	Mean dependent var S.D. dependent var Sum squared resid	10.79826 1.572129 0.948658

Data description

frequency:	we use quarterly data starting with $Q4/1993$ and ending with $Q4/2000$.
	The reason for starting with the end of 1993 is that the stabilisation
	programme in Croatia was introduced then and there would be heavy
	data distortion if previous observations are included.

variables: arrivals from 5 countries which account for around 75% of total arrivals on an annual basis (see Table 1)

	1993	1994	1995	1996	1997	1998	1999	2000	Total
Italy	258,190	356,954	193,827	467,051	688,041	750,809	538,347	886,461	4,139,680
Germany	194,318	355,716	210,968	448,672	640,031	720,569	531,259	919,789	4,021,322
Slovenia	229,660	294,438	299,908	437,604	577,920	637,662	689,851	818,868	3,985,911
Czech R.	238,252	435,168	119,104	345,471	579,061	498,538	415,295	697,521	3,328,410
Austria	248,988	362,458	193,082	341,519	447,437	456,899	374,276	511,896	2,936,555
Hungary	90,730	128,817	34,080	84,903	126,688	137,670	141,413	238,774	983,075
Slovakia	21,573	59,048	27,071	83,933	153,930	161,664	107,629	183,740	798,588
Poland	6,578	17,892	10,277	35,621	97,765	131,049	104,893	274,956	679,031
Netherlands	16,965	29,809	25,341	41,668	64,964	88,286	72,551	100,052	439,636
Total arrivals	1,520,980	2,292,758	1,324,492	2,649,424	3,834,186	4,111,536	4,239,250	5,337,649	25,310,275
% of main five markets	76.9	78.7	76.8	77.0	76.5	74.5	78.0	71.8	72.7

- nominal GDP taken from the IFS series (January 2001, version 1.1.53) in billions, Slovenian data taken from CB bulletin (check), I(1) series
- nominal exchange rates (expressed in the value of domestic currency for 100 units of foreign currency) taken from the Croatian CB bulletin, EOP data, the results should not significantly differ (i.e. are robust) when including quarterly average rates, I(0) series
- population IFS, in millions, since data for 2000 is not available, we used the estimated population size from previous year as a proxy
- relative price is estimated using foreign and domestic CPI, data for foreign CPI is taken from IFS, January 2001, whereas domestic CPI is taken from Croatian CB database, I(0) series
- data for Croatian tourism receipts are taken from the balance of payments position
- dummies: we use seasonal dummy variables due to the exceptional high seasonality of the arrivals time series, a dummy for the military action "storm", which took place in Q3/1995, a dummy for the Kosovo crisis in 1999

Ayres:

determinants of consumer demand:

price: dq/dp < 0

income: dy/dq>0, dy/dq<0 inferir good

substitution/competition: demand is a function of the degree of substitutability and level of competition

tastes and preferences: formation of tastes and preferences outside the model

However, in spite of the complexity of the tourism product and therefore limitations to the descriptive ability of tourism demand models, many of them opt for approximation using two or three aforementioned determinants modelled using proxies.

No.	Date	Title	Author(s)
W–1	December 1999	Croatia in the Second Stage of Transition, 1994–1999	Velimir Šonje and Boris Vujčić
W–2	January 2000	Is Unofficial Economy a Source of Corruption?	Michael Faulend and Vedran Šošić
W–3	September 2000	Measuring the Similarities of Economic Developments in Cen- tral Europe: A Correlation between the Business Cycles of Ger- many, Hungary, the Czech Republic and Croatia	Velimir Šonje and Igeta Vrbanc
W–4	September 2000	Exchange Rate and Output in the Aftermath of the Great Depression and During the Transition Period in Central Europe	Velimir Šonje
W–5	September 2000	The Monthly Transaction Money Demand in Croatia	Ante Babić
W–6	August 2001	General Equilibrium Analysis of Croatia's Accession to the World Trade Organization	Jasminka Šohinger, Davor Galinec and Glenn W. Harrison
W–7	February 2002	Efficiency of Banks in Croatia: A DEA Approach	lgor Jemrić and Boris Vujčić

The following Working Papers have been published since December 1999:

Guidelines to Authors

In its periodical publications *Working Papers, Surveys and Discussion Papers*, the Croatian National Bank publishes scientific and scholarly papers of the Bank's employees, visiting scholars, and other associate contributors.

After the submission, the manuscripts shall be subject to peer review and classification by the Manuscript Review and Classification Committee. The authors shall be informed of the acceptance or rejection of their manuscript for publication within two months following the manuscript submission.

Manuscripts are submitted and published in Croatian and/or English language.

Manuscripts submitted for publication should meet the following requirements:

Manuscripts should be submitted in magnetic or optical storage media (3.5-inch floppy, ZIP, CD) accompanied by three printed paper copies. The acceptable text formats are Word 6 or 97 for Windows/Mac. RTF code page 437 or 852 format is preferred.

Diskettes should be labeled with the type of the word-processor and database used, as well as with the name of the author.

The first page of the manuscript should contain the article title, first and last name of the author and his/her academic degree, name of the institution with which the author is associated, author's co-workers, and the complete mailing address of the corresponding author to whom a copy of the manuscript with requests for corrections shall be sent.

Additional information, such as acknowledgments, may be included in the first page. If this information is extensive, it is preferred to incorporate it within the text, whether at the end of the introductory section or in the special section preceding the list of references.

The second page should contain the abstract and the key words. The abstract is required to be explicit, descriptive, written in third person, consisting of not more than 250 words (maximum 1500 characters). The abstract should be followed by maximum 5 key words.

A single line spacing and A4 paper size should be used. The text must not be formatted, apart from applying bold and italic script to certain parts of the text. Titles must be numerated and separated from the text by a double line spacing, without formatting.

Tables, figures and charts that are a constituent part of the paper must be well laid out, containing: number, title, units of measurement, legend, data source, and footnotes. The footnotes referring to tables, figures and charts should be indicated by lower-case letters (a,b,c...) placed right below. When the tables, figures and charts are subsequently submitted, it is necessary to mark the places in the text where they should be inserted. They should be numbered in the same sequence as in the text and should be referred to in accordance with that numeration. If the tables and charts were previously inserted in the text from other programs (Excel, Lotus...), these databases in the Excel format should also be submitted (charts must contain the corresponding data series).

The preferred formats for illustrations are EPS or TIFF with explanations in 8 point Helvetica (Ariel, Swiss). The scanned illustration must have 300 dpi resolution for gray scale and full color illustration, and 600 dpi for lineart (line drawings, diagrams, charts).

Formulae must be legible. Indices and superscript must be explicable. The symbols' meaning must be given following the equation where they are used for the first time. The equations in the text referred to by the author should be marked by a serial number in brackets closer to the right margin.

Notes at the foot of the page (footnotes) should by indicated by Arabic numerals in superscript. They should be brief and written in a smaller font than the rest of the text.

References cited in the text are listed at the last page of the manuscript in the alphabetical order, according to the authors' last names. References should also include data on the publisher, city and year of publishing.

Publishing Department maintains the right to send back for the author's revision the accepted manuscript and illustrations that do not meet the above stated requirements.

Printed paper copies and diskettes containing manuscript files shall not be returned.

All contributors who wish to publish their papers are welcomed to do so by addressing them to the Publishing Department, following the above stated guidelines.

The Croatian National Bank publications:

Croatian National Bank – Annual Report

Regular annual publication surveying annual monetary and general economic developments as well as statistical data.

Croatian National Bank - Semi-annual Report

Regular semi-annual publication surveying semi-annual monetary and general economic developments and statistical data.

Croatian National Bank – Quarterly Report

Regular quarterly publication surveying quarterly monetary and general economic developments.

Banks Bulletin Publication providing survey of data on banks.

Croatian National Bank – Bulletin

Regular monthly publication surveying monthly monetary and general economic developments and monetary statistics.

Croatian National Bank – Working Papers

Occasional publication containing shorter scientific papers written by the CNB employees, visiting scholars and associate contributors.

Croatian National Bank – Surveys

Occasional publication containing papers of informative and surveying character written by the CNB employees, visiting scholars and associate contributors.

Croatian National Bank – Discussion Papers

Occasional publication containing discussion papers written by CNB employees, visiting scholars and associate contributors.

The Croatian National Bank also issues other publications such as, for example proceedings of conferences organized or co-organized by the CNB, books and papers or books and papers translations of special interest to the CNB as well as other similar publications.