Credit Booms Gone Bust: Monetary Policy, Leverage Cycles and Financial Crises, 1870–2008

Moritz Schularick (Free University, Berlin) Alan M. Taylor (University of California, Davis, and NBER)

Motivation

New interest in role of credit in macroeconomy

- Money view versus irrelevance view versus credit view
- Are credit booms dangerous? or epiphenomena?
- Should policymakers focus on them?

Motivation

New interest in role of credit in macroeconomy

- Money view versus irrelevance view versus credit view
- Are credit booms dangerous? or epiphenomena?
- Should policymakers focus on them?

Importance of some new long-run evidence

- "Rare events" problem
 - Need a *lot* of data to say anything meaningful
- Advanced versus emerging
 - Not so different when it comes to banking crises?
- Shifting importance of money versus credit
 - Decreasing importance of broad money?

Theoretical perspectives

Informal pioneers

 Thornton, Mill, Bagehot, Schumpeter, Austrian School, Minsky, Kindleberger

∃ ▶ ∢ ∃ ▶

Theoretical perspectives

Informal pioneers

 Thornton, Mill, Bagehot, Schumpeter, Austrian School, Minsky, Kindleberger

Formal modelers

- Bernanke Gertler 1995
- Kiyotaki Moore 1997
- Bernanke Gertler Gilchrist 1999
- Christiano Motto Rostagno 2007
- Adrian Shin 2008 2009
- Geanakoplos 2009
- Jermann Quadrini 2009

Theoretical perspectives

Informal pioneers

 Thornton, Mill, Bagehot, Schumpeter, Austrian School, Minsky, Kindleberger

Formal modelers

- Bernanke Gertler 1995
- Kiyotaki Moore 1997
- Bernanke Gertler Gilchrist 1999
- Christiano Motto Rostagno 2007
- Adrian Shin 2008 2009
- Geanakoplos 2009
- Jermann Quadrini 2009

Confronting theory with data (on a large scale) has been hard

A B F A B F

< m

What's new?

Contribution of this paper

- A massive new 140 × 14 annual panel database
- Key financial history variables for developed countries
- Many questions we could not answer without these data
- Better analyze the causes/consequences of "rare event" crises
- Major research area (e.g. Barro, Reinhart-Rogoff)

What's new?

Contribution of this paper

- A massive new 140 × 14 annual panel database
- Key financial history variables for developed countries
- Many questions we could not answer without these data
- Better analyze the causes/consequences of "rare event" crises
- Major research area (e.g. Barro, Reinhart-Rogoff)

Future research agenda

- Develop, refine, and extend the dataset
- Apply to other enduring & important macro-finance questions
- Examples:
 - Which macroeconomic policies work best in a financial crisis?
 - Money versus credit as the cause of inflation?
 - Does credit drive recoveries? economic growth in general?

(日) (同) (三) (三)

Outline

Descriptive: new annual bank credit data

- 1870-2008 for N=14 (+other macro aggregates)
- Trends: What has happened in the long run?
- Event study: what has happened in financial crises?

< 3 > < 3 >

Outline

Descriptive: new annual bank credit data

- 1870-2008 for N=14 (+other macro aggregates)
- Trends: What has happened in the long run?
- Event study: what has happened in financial crises?

Predictive: Do credit booms go bust?

- "Early warning?" Can credit data help us forecast financial crisis?
- Predictive ability testing
- Control for other potential causal factors

Part 1: Descriptive

A Very Large New Dataset

- Data: Standard macro variables plus our new data
 - Bank loans = Domestic currency lending by domestic banks to domestic households and non-financial corporations (excluding lending within the financial system). Banks are monetary financial institutions and include savings banks, postal banks, credit unions, mortgage associations, and building societies.
 - Bank assets = Sum of all balance sheet assets of banks with national residency (excluding foreign currency assets).
 - Sources & Methods

過 ト イヨ ト イヨト

Part 1: Descriptive

A Very Large New Dataset

- Data: Standard macro variables plus our new data
 - Bank loans = Domestic currency lending by domestic banks to domestic households and non-financial corporations (excluding lending within the financial system). Banks are monetary financial institutions and include savings banks, postal banks, credit unions, mortgage associations, and building societies.
 - Bank assets = Sum of all balance sheet assets of banks with national residency (excluding foreign currency assets).
 - Sources & Methods
- To summarize these data we construct "global trends"
 - For any X_{it} estimate country-fixed effects regression

 $X_{it} = a_i + b_t + e_{it}$

then plot the estimated year effects b_t to show the average global level of X in year t.

Note: averaging masks cyclical variation

イロト 不得下 イヨト イヨト 二日

Growth of Banking

Growth of Funding Leverage

Trends—Summary

Age of Money (1870–1970s)

- Money and credit were tightly linked and maintained a fairly stable relationship relative to GDP
- Both aggregates collapsed in the Great Depression
- Recovery from the collapse from 1940s to 1970s in a period of low leverage/financial repression/regulation (with no financial crises)

- A I I I A I I I I

Trends—Summary

- Age of Money (1870–1970s)
 - Money and credit were tightly linked and maintained a fairly stable relationship relative to GDP
 - Both aggregates collapsed in the Great Depression
 - Recovery from the collapse from 1940s to 1970s in a period of low leverage/financial repression/regulation (with no financial crises)
- Age of Credit (1970s-2008)
 - Continued and unprecedented rise of leverage and growth of non-monetary liabilities of banks
 - Decoupling of credit from money
 - Decline of safe/liquid assets on bank balance sheets

過 ト イヨ ト イヨト

Responses in Financial Crises

Event analysis

- Use Bordo et al. and Reinhart-Rogoff event definitions, although we make 1 or 2 minor adjustments
- Track aggregates in years 0–5 after an event

A B F A B F

Responses in Financial Crises

Event analysis

- Use Bordo et al. and Reinhart-Rogoff event definitions, although we make 1 or 2 minor adjustments
- Track aggregates in years 0–5 after an event
- Compare the pre-WW2 and post-WW2 eras
 - Was there a watershed?
 - Look for evidence that changes in central bank policies after the Great Depression have made a difference

Money & Credit in Financial Crises

Real Variables in Financial Crises

Nominal Variables in Financial Crises

A Few Cross-Regime Comparisons

Cumulative log level effect, after years	Pre-World War 2	Pre-World War 2,	Post-World War 2
0-5 of crisis, versus noncrisis trend, for:		excluding 1930s	
Log broad money	-0.141***	-0.103***	-0.062
	(0.027)	(0.029)	(0.039)
Log bank loans	-0.236***	-0.179***	-0.148***
	(0.044)	(0.048)	(0.053)
Log bank assets	-0.113***	-0.078**	-0.239***
	(0.034)	(0.037)	(0.048)
Log real GDP	-0.045**	-0.018	-0.062***
	(0.020)	(0.020)	(0.017)
Log real investment	-0.203**	-0.114	-0.222***
	(0.094)	(0.093)	(0.047)
Log price level	-0.084***	-0.047*	+0.009
	(0.025)	(0.027)	(0.028)

 TABLE 2
 CUMULATIVE EFFECTS AFTER FINANCIAL CRISES

Notes: *** denotes significance at the 99% level, ** 95% level, and * 90% level. Standard errors in parentheses.

3

Interpretation of Results

Lessons of the Great Depression — Have Been Learned?

- Since WW2, central banks have strongly supported money and credit in the wake of financial crises
- "Success" in preventing deleveraging of the financial sector and deflationary tendencies
- But not in reducing output costs
- Bailing out finance but failing to protect the real economy?

過 ト イヨ ト イヨト

Interpretation of Results

Lessons of the Great Depression — Have Been Learned?

- Since WW2, central banks have strongly supported money and credit in the wake of financial crises
- "Success" in preventing deleveraging of the financial sector and deflationary tendencies
- But not in reducing output costs
- Bailing out finance but failing to protect the real economy?
- Unintended consequences?
 - Policy intervention possibly created more of the very hazards it was intended to solve
 - More financialized economy may be harder to stabilize

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Part 2: Predictive Crisis Prediction Framework

• Economic conditions at t - 1, t - 2, ... \rightarrow crisis at time t

$$logit(p_{it}) = b_{0i} + b_1(L) \Delta logCREDIT_{it} + b_2(L)X_{it} + e_{it}$$

where

 $logit(p) = ln\left(\frac{p}{1-p}\right)$ is the log odds ratio $b_i(L)$ is a polynominal in the lag operator L

 We have also tried a linear probability specification (and a variety of fixed effects), but the results are robust

ヘロト 人間 とくほ とくほ とう

Baseline Model

	(6)	(7)	(8)
Specification	Baseline	Replace	Replace
(Logit country effects)		loans with	loans with
		broad	narrow
		money	money
L.Dlog(loans/P)	-0.108	1.942	-0.890
	(2.05)	(2.94)	(1.37)
L2.Dlog(loans/P)	7.215***	5.329**	2.697
	(1.99)	(2.52)	(1.68)
L3.Dlog(loans/P)	1.785	2.423	2.463
	(1.83)	(2.63)	(1.77)
L4.Dlog(loans/P)	0.0517	-1.742	-2.244
	(1.49)	(2.51)	(1.65)
L5.Dlog(loans/P)	1.073	4.275*	1.210
-	(1.78)	(2.30)	(1.82)
Observations	1285	1361	1394
Groups	14	14	14
Avg. obs. per group	91.79	97.21	99.57
Sum of lag coefficients	10.02***	12.23***	3.235
se	3.235	3.544	3.129
Test for all lags = 0, χ^2	17.22***	18.35***	5.705
p value	0.0041	0.0025	0.3360
Test for country effects = 0, χ^2	7.789	9.333	8.627
p value	0.857	0.747	0.800
Pseudo R ²	0.0596	0.0481	0.0343

TABLE 4 BASELINE MODEL AND ALTERNATIVE MEASURES OF MONEY AND CREDIT

Notes: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in parentheses.

Predictive Ability Testing: ROC Curve and Diagnostics Background, definition.

d =outcome (binary), $\hat{z} = \hat{\beta}X$ signal (continuous), c = threshold $TP(c) = P [\hat{z} \ge c | d = +1]$ $FP(c) = P [\hat{z} \ge c | d = -1]$

イロト 不得下 イヨト イヨト 二日

Predictive Ability Testing: ROC Curve and Diagnostics Background, definition.

 $d = ext{outcome} ext{ (binary)}, \ \hat{z} = \hat{eta} X ext{ signal (continuous)}, \ c = ext{threshold}$ $TP(c) = P [\hat{z} \ge c | d = +1] ext{ } FP(c) = P [\hat{z} \ge c | d = -1]$

Taylor & Schularick (2010)

18 / 24

Is there an economic metric for classification performance?

Yes. Suppose π is frequency of crisis events (positives). Expected utility is

$$U(c) = U_{TP}TP(c)\pi + U_{FN}(1 - TP(c))\pi + (1)$$

$$U_{FP}FP(c)(1 - \pi) + U_{TN}(1 - FP(c))(1 - \pi).$$

(日) (同) (三) (三)

Is there an economic metric for classification performance?

Yes. Suppose π is frequency of crisis events (positives). Expected utility is

$$U(c) = U_{TP}TP(c)\pi + U_{FN}(1 - TP(c))\pi + (1)$$

$$U_{FP}FP(c)(1 - \pi) + U_{TN}(1 - FP(c))(1 - \pi).$$

Differentiate. Slope of ROC curve at optimum threshold (dU/dc = 0) is

$$slope = \frac{dTP}{dFP} = \frac{1 - \pi}{\pi} \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}.$$
(2)

(日) (同) (三) (三)

Is there an economic metric for classification performance?

Yes. Suppose π is frequency of crisis events (positives). Expected utility is

$$U(c) = U_{TP}TP(c)\pi + U_{FN}(1 - TP(c))\pi + (1)$$

$$U_{FP}FP(c)(1 - \pi) + U_{TN}(1 - FP(c))(1 - \pi).$$

Differentiate. Slope of ROC curve at optimum threshold (dU/dc = 0) is

$$slope = \frac{dTP}{dFP} = \frac{1 - \pi}{\pi} \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}.$$
(2)

(日) (同) (三) (三)

When misclassification costs are equal for P and N, and $\pi = \frac{1}{2}$ you want to operate at the point furthest from diagonal (slope=1; KS test statistic).

Is there an economic metric for classification performance?

Yes. Suppose π is frequency of crisis events (positives). Expected utility is

$$U(c) = U_{TP}TP(c)\pi + U_{FN}(1 - TP(c))\pi + (1)$$

$$U_{FP}FP(c)(1 - \pi) + U_{TN}(1 - FP(c))(1 - \pi).$$

Differentiate. Slope of ROC curve at optimum threshold (dU/dc = 0) is

$$slope = \frac{dTP}{dFP} = \frac{1 - \pi}{\pi} \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}.$$
(2)

소리가 소문가 소문가 소문가 ...

When misclassification costs are equal for P and N, and $\pi = \frac{1}{2}$ you want to operate at the point furthest from diagonal (slope=1; KS test statistic). In general, be conservative calling P when P's are rare (π low) or when FP error (v TN) more costly than FN error (v TP). [Set *c* high. Medical examples.]

Is there an economic metric for classification performance?

Yes. Suppose π is frequency of crisis events (positives). Expected utility is

$$U(c) = U_{TP}TP(c)\pi + U_{FN}(1 - TP(c))\pi + (1)$$

$$U_{FP}FP(c)(1 - \pi) + U_{TN}(1 - FP(c))(1 - \pi).$$

Differentiate. Slope of ROC curve at optimum threshold (dU/dc = 0) is

$$slope = \frac{dTP}{dFP} = \frac{1 - \pi}{\pi} \frac{(U_{TN} - U_{FP})}{(U_{TP} - U_{FN})}.$$
(2)

ヘロト 人間 とくほ とくほ とう

When misclassification costs are equal for P and N, and $\pi = \frac{1}{2}$ you want to operate at the point furthest from diagonal (slope=1; KS test statistic). In general, be conservative calling P when P's are rare (π low) or when FP error (v TN) more costly than FN error (v TP). [Set *c* high. Medical examples.] Investigating these metrics for financial crises is a goal for our future work. (For another application, to FX carry trade, see Jordà and Taylor 2009).

Baseline Model - The ROC Curve

What is a "high" AUROC? [Medical examples]

Taylor & Schularick (2010)

< A

• • = • • = •

In- and Out-of-Sample

Out of sample period is 1984-2008

The gold standard: out-of-sample predictive power"Who could have known?"

Taylor & Schularick (2010)

∃ → (∃ →

Credit versus Money as Crisis Predictors Pre-WW2 and Post-WW2

- Before WW2 credit and money models yield similar predictions
- After WW2 credit model predictions are far superior

(日) (同) (三) (三)

Robustness Checks

Additional Control Variables

 Adding additional control variables does not lead to a statistically significant improvement in predictive ability (measured by AUROC)

Add 5 lags of	Significant?	Credit significant?	AUROC
Real GDP growth	Y	Y	0.711
Inflation	Y	Y	0.756
Nominal interest rate	Ν	Y	0.712
Real interest rate	Υ	Y	0.744
Investment/GDP ratio	Y	Y	0.737
BASELINE	_	Y	0.697

A B F A B F

Conclusions

Major findings

- Credit = Money?
 - In the distant past, yes. Not any more.
- Great moderation?
 - The real responses to financial crises are no better now than in the barbarous pre-WW2 era.
- Early warning?
 - Credit data contain predictive information about future financial crises.

B ▶ < B ▶

Conclusions

Major findings

- Credit = Money?
 - In the distant past, yes. Not any more.
- Great moderation?
 - The real responses to financial crises are no better now than in the barbarous pre-WW2 era.
- Early warning?
 - Credit data contain predictive information about future financial crises.

Implications

- Policymakers ignored credit at their peril
 - "BIS view" versus "Old conventional wisdom."
 - Borio/White/Rajan/et al. versus Greenspan & Co.
- Large future research agenda ahead
 - Study credit-growth-inflation linkages more carefully
 - Measure costs of crises more accurately (treatment-v-control)